Spar buoys, ClubStead, Semi-submersible oil platforms, and Seadrome

> Several things they have in common and why

Jeff Chan Seasteading Conference 2009

Overview

- Spar buoy Marc de Piolenc, nation-builders, 2004
- Semi-submersible oil platform Shell Oil, 1961
- ClubStead MI&T for Seasteading Institute, 2008
- Seadrome Edward R. Armstrong, 1927, U.S.

- Common design elements and reasons for them
- Differences

Spar buoy

Spar Buoy The Seasteading Institute 2008

Semi-submersible oil platform

Blue Water Rig No. 1, Friede & Goldman, LTD, via Wikimedia Commons

ClubStead

ClubStead, The Seasteading Institute, 2009

Seadrome

Seadrome Popular Science February 1934

Seadrome

- Proposed 1927, pre-dates oil platforms and ClubStead
- Was to be a series of aircraft runways at sea before long-range aircraft existed, like a string of artificial islands between U.S. and Europe
- Similar flight deck shape, dimensions, height as modern aircraft carrier, but about 10% larger.
 Perhaps inspired the latter
- 1,200 feet long, 400 feet wide middle, 200 at ends

Seadrome (continued)

- Obsoleted by long-range aircraft
- Cost estimated at \$10 million 1930's post-Gold, precrash dollars.
- Proposed just before the great depression dried up funding, but pursued until 1946
- 64,000 ton displacement
- 70 foot air gap, 160 foot draft

Common elements

- Vertical cylindrical floats
- Horizontal decks
- Trusses
- Heave plates

Why use vertical cylindrical floats?

- Minimize waterplane area (cross-sectional area at waterline)
- Maximize volume for buoyancy
- Minimize drag to omnidirectional waves
- Simple, strong shape
- Minimize wave response

Directional drag of shapes

What are trusses?

- Thin straight elements
- Connected at ends

- Usually triangular units, which resolve forces into pure compression or tension
- Can be two or three dimensional, that is planar or spatial

Why use trusses?

- Lower mass
- More efficient use of materials
- Lower displacement for floating structures
- Weight begets weight; heavier structure requires more strength to support itself, etc., etc.
- Lower weight makes some structures possible such as suspension bridges, towers, tall buildings

Heave plates

- Horizontal plates or shapes
- Resist movement in the heave direction (up and down)
- In other words, have high drag along the vertical axis
- Pontoon hulls on semi-submersibles probably have some anti-heave and anti-sway, but are low drag fore-aft for towing

Semi-submersible oil platform

Blue Water Rig No. 1, Friede & Goldman, LTD, via Wikimedia Commons

ClubStead

ClubStead, The Seasteading Institute, 2009

Seadrome

Seadrome Popular Science February 1934

Seadrome, side view

Seadrome Popular Science February 1934

Edward R. Armstrong, Floating oil rig

Edward R. Armstrong papers from Bruce Figarsky via History Detectives, 2009

Summary - What do these designs have in common?

- Vertical float columns minimize wave response, simple and strong
- Horizontal decks "land" for housing
- Trusses lighter, stronger structures
- Heave plates reduce uncomfortable and destructive heave motion
- Synergy whole works better than sum of parts